TORQ Fuelling System, oziroma sistem za dovajanje goriva (ogljikovih hidratov), je prilagojen za vse vzdržljivostne športnike, ne glede na to ali se ukvarjate s kolesarstvom, triatlonom, tekom, itd.. Pri teku ste le nekoliko bolj omejeni pri izbiri izdelkov zaradi same praktičnosti. Naučili pa se boste pravega pristopa za vnos ogljikovih hidratov z izdelki TORQ.

Naše smernice so zelo preproste. Za optimalno ohranjanje vzdržljivosti vnesite 2-3 enote TORQ na uro. 1 enota TORQ je enaka 30 g ogljikovih hidratov. ki jih je mogoče večkrat prenašati, in porabo vaših enot TORQ smo izjemno poenostavili z ustvarjanjem enotnosti v naši ponudbi izdelkov. Izdelki vsebujejo 30 g ogljikovih hidratov na gel, ploščico ali odmerek za hitrejše in lažje računanje vnosa.



Poleti bomo med aktivnostjo zaužili več izotoničnega napitka, saj se zaradi vročine in visokih temperatur pospešeno potimo. S potenjem izločamo tekočino in elektrolite, ki jih je nujno potrebno nadomestiti. V nasprotnem primeru pride do pojava prezgodnje mišične utrujenosti, dehidracije in posledičnega padca zmogljivosti in vzdržljivosti.


V hladnejšem vremenu je stopnja potenja nižja in takrat bomo zaužili več energijskih ploščic in gelov. Ne glede na stopnjo potenja, pa ostanejo naše potrebe po ogljikovih hidratih nespremenjene. TORQ-ov Fuelling System se prilagaja vašim potrebam po hidraciji in oskrbi z gorivom. 

TORQ Fuelling System za kolesarje


TORQ Fuelling System za tekače


Zaključek

Priporočamo, da pričnete postopno z vnosom ogljikovih hidratov in tako testirate kakšen bo odziv na zaužito količino ogljikovih hidratov. Vnos ogljikovih hidratov je potrebno prilagoditi glede na individualne potrebe, in sicer stopnjo treniranosti, čas trajanja aktivnosti, intenzivnost aktivnosti in cilj. V splošnem velja priporočilo, da je v primeru dlje časa trajajočih aktivnosti potrebno zaužiti 60-90 g ogljikovih hidratov na uro, odvisno od intenzivnosti vadbe. Zelo izkušeni športniki in tekmovalci zaužijejo celo nad 100 g ogljikovih hidratov.

Viri

Stellingwerff, T & Cox, GR. (2014). Systematic review: Carbohydrate supplementation on exercise performance or capacity of varying durations. Appl Physiol Nutr Metab. 2014 Sep;39(9):998-1011.

Wilson. PB., Ingraham, SJ. (2015). Glucose-fructose likely improves gastrointestinal comfort and endurance running performance relative to glucose-only. Scand J Med Sci Sports. [Epub ahead of print].

Currell, K & Jeukendrup, A.E. (2008). Superior endurance performance with ingestion of multiple transportable carbohydrates. Med Sci Sports Exerc. 40(2):275–81.

Triplett, D., Doyle, D., Rupp, J., Benardot, D. (2010). An isocaloric glucose-fructose beverage’s effect on simulated 100-km cycling performance compared with a glucose-only beverage. Int J Sport Nutr Exerc Metab. 20(2):122–31

Tarpey, M.D., Roberts, J.D., Kass, L.S., Tarpey, R.J., Roberts, M.G. (2013). The ingestion of protein with a maltodextrin and fructose beverage on substrate utilisation and exercise performance. Appl Physiol Nutr Metab. 38(12):1245–53.

Rowlands, D.S., Swift, M., Ros, M., Green, J.G. (2012). Composite versus single transportable carbohydrate solution enhances race and laboratory cycling performance. Appl Physiol Nutr Metab. 37(3):425–36.

Baur, D.A., Schroer, A.B., Luden, N.D., Womack, C.J., Smyth, S.A., Saunders, M.J. (2014). Glucose-fructose enhances performance versus isocaloric, but not moderate, glucose. Med Sci Sports Exerc. 46(9):1778–86.

Rowlands, D.S., Thorburn, M.S., Thorp, R.M., Broadbent, S.M., Shi, X. (2008). Effect of graded fructose co-ingestion with maltodextrin on exogenous 14C-fructose and 13C-glucose oxidation efficiency and high-intensity cycling performance. J Appl Physiol. 104:1709–19.

O’Brien, W.J & Rowlands, D.S. (2011). Fructose-maltodextrin ratio in a carbohydrate-electrolyte solution differentially affects exogenous carbohydrate oxidation rate, gut comfort, and performance. Am J Physiol Gastrointest Liver Physiol. 300(1):G181–9.

O’Brien, W.J., Stannard, S.R., Clarke, J.A., Rowlands, D.S. (2013). Fructose–maltodextrin ratio governs exogenous and other CHO oxidation and performance. Med Sci Sports Exerc. 45(9):1814–24.

Rowlands, D.S., Swift, M., Ros, M., Green, J.G. (2012). Composite versus single transportable carbohydrate solution enhances race and laboratory cycling performance. Applied Physiology, Nutrition, and Metabolism. 37(3): 425-436.

Smith, J.W., Pascoe, D.D., Passe, D., Ruby, B.C., Stewart, L.K., Baker, L.B., et al. (2013). Curvilinear dose-response relationship of carbohydrate (0–120 g·h−1) and performance. Med Sci Sports Exerc. 45(2):336–41.

Roberts, J.D., Tarpey, M.D., Kass, L.S., Tarpey, R.J., Roberts, M.G. (2014). Assessing a commercially available sports drink on exogenous carbohydrate oxidation, fluid delivery and sustained exercise performance. J Int Soc Sports Nutr. 11(1):1–14.

Jentjens, R.L., Underwood, K., Achten, J., Currell, K., Mann, C.H., Jeukendrup, A.E. (2006). Exogenous carbohydrate oxidation rates are elevated after combined ingestion of glucose and fructose during exercise in the heat. J Appl Physiol. 100(3):807–16.

Jeukendrup, A.E & Moseley, L. (2010). Multiple transportable carbohydrates enhance gastric emptying and fluid delivery. Scand J Med Sci Sports. 20(1):112–21.

Davis, J.M., Burgess, W.A., Slentz, C.A., Bartoli, W.P. (1990). Fluid availability of sports drinks differing in carbohydrate type and concentration. Am J Clin Nutr. 51(6):1054–7.

Jentjens, R.L., Venables, M.C., Jeukendrup, A.E. (2004). Oxidation of exogenous glucose, sucrose, and maltose during prolonged cycling exercise. J Appl Physiol. 96(4):1285–91.

Jentjens, R.L., Achten, J., Jeukendrup, A.E. (2004). High oxidation rates from combined carbohydrates ingested during exercise. Med Sci Sports Exerc. 36(9):1551–8.

Wallis, G.A., Rowlands, D.S., Shaw, C., Jentjens, R.L., Jeukendrup, A.E. (2005). Oxidation of combined ingestion of maltodextrins and fructose during exercise. Med Sci Sports Exerc. 37(3):426–32.

Jentjens, R.L., Moseley, L., Waring, R.H., Harding, L.K., Jeukendrup, A.E. (2004). Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol. 96(4):1277–84.

Jentjens, R.L & Jeukendrup, A.E. (2005). High rates of exogenous carbohydrate oxidation from a mixture of glucose and fructose ingested during prolonged cycling exercise. Brit J Nutr. 93:485–92.

Fuchs, C.J., Gonzalez, J.T., Beelen, M., Cermak, N.M., Smith, F.E., Thelwall, P.E., Taylor, R., Trenell, M.I., Stevenson, E.J., van Loon, L.J. (2016). Sucrose ingestion after exhaustive exercise accelerates liver, but not muscle glycogen repletion compared with glucose ingestion in trained athletes. J Appl Physi.